Statistics
Summer 2023
Lecture 11

Class QZ 13
Given a binomial Prob. dist with

$$
n=250 \quad \therefore \quad P=.8
$$

1) $q=1-p=.2$
2) $\mu=n p=200$
3) $\sigma^{2}=n p q=40$

95\% Range
4) σ (Round to whole \#)
5) Usual Range

$$
=\sqrt{\sigma^{2}}=\sqrt{40} \approx 6
$$

Reduce by $1=P 188$ to 212
6) $P(195 \leq x \leq 210)$

$$
\begin{aligned}
& \text { 6) } P(195 \leq x \leq 210) \\
& =\operatorname{binomedf}(250, .8,210) \text {-binomcdf }(250,8,194)=.763
\end{aligned}
$$

$$
\text { Data }\left\{\begin{array}{l}
\text { 1) Qualitative } \\
\text { (Non-Numerical) } \\
\qquad \begin{array}{l}
\text { Quantitative } \\
\text { (Numerical) }
\end{array} \\
\begin{array}{l}
\text { 1) Discrete } \\
\text { Countable }
\end{array} \\
\text { 2) Continuous } \\
\text { Measureable }
\end{array}\right.
$$

we use continuous random variable

1) Uniform Prob. dist.
2) Standard normal Prob. dist.
3) Normal Prob. dist.
4) Central Limit Theorem
5) Applications

Uniform Prob. Dist.
Let x be a Continuous random variable for all values from a to b with uniform Prob. dist.

1) Graph is rectangular from a to b with width $=\frac{1}{b-a}$

$P(c<x<d)$

$$
=(d-c) \cdot \frac{1}{b-a}
$$

$$
P(x=c)=0
$$

Line \rightarrow Zero Area

Jun 29-7:35 AM

Consider a uniform Prob. dist. For all Valves from 2 to 27.

$$
P(x=10)=0
$$

$$
P(17<x<21)=(21-17) \cdot \frac{1}{25}: \frac{4}{25}
$$

$$
P(x<7.5)
$$

$=(7.5-2) \cdot \frac{1}{25}$

$$
=\frac{5.5}{25}=\frac{11}{50}
$$

4) find $x=Q_{1}$
25% below $\dot{\varepsilon} 75 \%$ above

Wait time to be Seated at a local food place
$0 \leq x \leq 15$
is at most 15 ming and has a uniform Prob. dist.

P (wait time is below 5 minutes $)=P(x<5)$

$$
=(5-0) \cdot \frac{1}{15}=\frac{5}{15}=\frac{1}{3}
$$

P (wait time is more than 12 minutes)
$=P(x>12)=(15-12) \cdot \frac{1}{15}=\frac{3}{15}=\frac{1}{5}$
find Q_{3} for the wait time.

Consider a uniform Prob. dist. for all Values
from 8 to 40.

1) Graph Er? label.

2) Find two values $x_{1} \dot{\varepsilon} x_{2}-(35-10) \cdot \frac{1}{32}=1-\frac{25}{32}=\frac{7}{32}$ that separate the middle $80 /$ from the rest.
Total Area $=1$

$$
1-.8=.2
$$

$$
.2 \div 2=.1
$$

$$
\left(x_{1}-8\right) \cdot \frac{1}{32}=.1
$$

$$
\begin{gathered}
x_{1}-8=32(.1) \\
x_{1}-8=3.2 \\
x_{1}=11.2
\end{gathered}
$$

Consider a uniform Prob. dist. for all values I-.9=.1
from 4 to 54.

1) Draw ε ह label.

2) find $x_{1} \sum_{1} x_{2}$ that

Separate the middle 90 /. from the rest.

$$
\begin{array}{lll}
\left(x_{1}-4\right) \cdot \frac{1}{50}=.05 & x_{1}-4=50(.05) & x_{1}-4=2.5 \\
\left(54-x_{2}\right) \cdot \frac{1}{50}=.05 & 54-x_{2}=50(.05) & x_{1}=6.5 \\
& 54-x_{2}=2.5 & x_{2}=51.5
\end{array}
$$

Standard Normal Prob. dist:

1) We use $Z, P(Z=c)=0$
2) Graph is symmetric, bell-shape with total area $=1$.
3) Mean $=$ Mode $=$ Median
4) $\mu=0, \sigma=1$
5) $P(a<z<b)$

we use and VARS normalcdf command

$$
P(a<z<b)=\operatorname{normalcdf}(L, U, \mu, \sigma)
$$

Drawing, labeling, shading, TI command required

find $P(-2<z<2)$

$$
=\operatorname{mormald} d f(-2,2,0,1)
$$

Jun 29-8:43 AM
find $P(z>-1.645)$

Find $P(z<1.960)$

find $P(z<-1$ OR $z>1.8)$

$$
=\underset{\uparrow}{1}-P(-1<z<1.8)
$$

Total Area= Total Prob.

$$
=1-\operatorname{normalcdf}(-1,1.8,0,1)^{\sigma=1}=.195
$$

find $P(z<-2$ land $z>2)=0$ Is there an overlap?
NO

Mutually
Exclusive Events

Now doing Reverse
find $z=P_{90}$, Round to 3 -decimal Places, 90% below \& 10% above

find $Z=Q_{1}$, Round to 3-decimals 25% below $\dot{\xi} .75$ above

find k Such that $P(Z>k)=.01$

$$
1-.01=.99
$$

Find K such that $P(z<k)=.02$

find two z-values, rounded to 3 -decimal places, that separate the middle 95% from the rest.

find two z-values round to 3-decimal places, that separate the middle 99% from the rest.

Normal Prob. Dist.:

1) Use $x, \quad P(x=c)=0$
2) Graph is bell-shape, symmetric with total area $=1$
3) Mean $=$ Mode $=$ Median
4) $\mu \dot{\varepsilon} \sigma$ is given in the process.

$$
\begin{aligned}
& P(a<x<b) \\
& \text { Normal } \rightarrow \mathbb{N}(\underset{\text { Mean }}{\mu, \sigma}, \underset{\sigma}{\mu}) \text { stand. nev. }
\end{aligned}
$$

Jun 29-9:58 AM

Given

Prob. Dist.
Find $P(70<x<85)$

$$
=\operatorname{normaledf}(70,85,75,8)
$$

$$
=.628
$$

Find $x=P_{95}$, Round to a whole \#

Consider a normal Prob. dist. with $\mu=125$?

$$
.988
$$

$$
P(x<165)
$$

$=$ normaledf $(\overline{\operatorname{A}} \underset{\sim}{F 99}, 165,125,20)$

find $x=Q_{1}$, Round to whole \#

Jun 29-10:08 AM

Consider a normal Prob. dist with the mean of 175 and Standard deviation of 25.N(175,25)

$$
\begin{aligned}
& P(x<125 \text { OR } x>200) \\
& =1-P(125<x<200)
\end{aligned}
$$

$$
=1 \text { - normal } f \text { (}
$$

$$
125,200,175,25)
$$

$$
125
$$

$$
\begin{aligned}
& \mu=175 \\
& \sigma=25
\end{aligned}
$$

$$
=.181
$$

$$
P(x<125 \sim x>200)=0
$$

No Overlap
M.E.E. , Disjointed Events
find two x-values, Round to whole \#, that Separate the middle 981 . from the rest.

$$
\begin{aligned}
x_{1} & =\operatorname{inv} \operatorname{Norm}(.01,175,25) \\
& =116.841 \\
& \approx 117 \\
x_{2} & =\text { invNorm }(.99,175,25) \\
& =233.159 \approx 233
\end{aligned}
$$

Jun 29-10:25 AM

Exam Scores are normally dist. with $\mu=75$ and $\sigma=10$.
If we randomly Select one exam, find the prob. That score is
a) below 90.

$$
\begin{aligned}
& P(x<90) \\
& =\text { normakdf }(-E 99,90,75,10) \quad \begin{array}{l}
\mu=10 \\
=.933
\end{array}
\end{aligned}
$$

b) above 60 .

$$
P(x>60)
$$

$$
=\operatorname{normalcdf}(60, E 99,75,10)
$$

3) Sind exam Score, round to whole \#, that Separates the top 10\% from the rest.

$$
\begin{aligned}
x & =\text { invNorm }(.9,75,10) \\
& =87.816 \\
& \approx 88
\end{aligned}
$$

Find the Score that Separates the bottom 10\%. from the rest, Round to whole\#.

Jun 29-10:41 AM

Review for SG iT
Consider a geometric prob. dist. with $p=.9$

$$
\begin{aligned}
& q=1-p=1-.9=.1 \\
& \mu=\frac{1}{p}=\frac{1}{.9}=1.111 \\
& \sigma^{2}=\frac{q}{p^{2}}=\frac{.1}{.9^{2}}=.123 \\
& \mu \approx 1.1, \sigma \approx .4
\end{aligned}
$$

usual Range

$$
\mu \pm 2 \sigma=
$$

$$
1.1 \pm 2(.4) \Rightarrow .3 \text { to } 1.9
$$

$P($ First success happens on 3rd trial $)=$

$$
P(x=3)=\text { geomet pdf }(.9,3)=.009
$$

$P($ first Success happens after and trial)

$$
\begin{gathered}
P(x>2)=P(x \geq 3)=1-P(x \leq 2) \\
23
\end{gathered}
$$

Lisa serves 16 people in $\frac{\text { any hour at work in average }}{\text { Fixed }}$

Poisson Dist.

$$
\sigma^{2}=\mu=16 \quad \sigma=\sqrt{\sigma^{2}}=4
$$

$$
\text { 68\%. Range } \Rightarrow \mu \pm \sigma=16 \pm 4 \Rightarrow 12 \text { to } 20
$$

find the prob. That she serves between 12 and 20 , inclusive, Customers per hour.

$$
\begin{aligned}
P(12 \leq x \leq 20) & =\text { Poissoncdf }(16,20)-\text { Poissoncdf }(16,11) \\
& =.741
\end{aligned}
$$

1 in 40 packages arrive late. $\quad P=\frac{1}{40}$
P (first late arrival happens on 4 th delivery)

$$
P(x=4)=\text { geomet } p d f(1 / 40,4)=.023
$$

P (first late delivery happens before the roth delivers)

$$
\begin{array}{r}
P(x<10)=P(x \leq 9)=\text { geometcdf }(1 / 40,9) \\
=.204
\end{array}
$$

